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Abstract 

Flowing wellbore electrical-conductivity logging provides a means to determine 

hydrologic properties of fractures, fracture zones, or other permeable layers intersecting a 

borehole in saturated rock.  The method involves analyzing the time-evolution of fluid electrical 

conductivity logs obtained while the well is being pumped and yields information on the 

location, hydraulic transmissivity, and salinity of permeable layers, as well as their initial (or 

ambient) pressure head.  Earlier analysis methods were restricted to the case in which flows from 

the permeable layers or fractures were directed into the borehole.  More recently, a numerical 

model for simulating flowing-conductivity logging was adapted to permit treatment of both 

inflow and outflow, including analysis of natural regional flow in the permeable layer.  However, 

determining the fracture properties with the numerical model by optimizing the match to the 

conductivity logs is a laborious trial-and-error procedure.  In this paper, we identify the 

signatures of various inflow and outflow features in the conductivity logs to expedite this 

procedure and to provide physical insight for the analysis of these logs.  Generally, inflow points 

are found to produce a distinctive signature on the conductivity logs themselves, enabling the 

determination of location, inflow rate, and ion concentration in a straightforward manner.  
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Identifying outflow locations and flow rates, on the other hand, can be done with a more 

complicated integral method.  Running a set of several conductivity logs with different pumping 

rates (e.g., half and double the original pumping rate) provides further information on the nature 

of the feed points.  In addition to enabling the estimation of flow parameters from conductivity 

logs, an understanding of the conductivity log signatures can aid in the design of follow-up 

logging activities. 

1.  Introduction 

In the study of flow and transport through fractured rocks, knowledge of the locations of 

fractures and their hydraulic properties is essential.  Often such knowledge is obtained using 

deep boreholes penetrating the fractured rock.  Among the various downhole methods of 

determining fracture properties that have been developed over the past few decades, flowing 

wellbore electrical conductivity-logging has proved to be quite useful (Tsang et al., 1990).  In 

this method, the wellbore water is first replaced by de-ionized water or, alternatively, water of a 

constant salinity distinctly different from that of the formation water.  This is done by passing the 

de-ionized water down a tube to the bottom of the borehole at a given rate, while simultaneously 

pumping from the top of the well at the same rate, for a short time period.  Next, the well is shut 

in or pumped from the top at a constant low flow rate (e.g., tens of liters per minute), while an 

electric conductivity probe is lowered into the borehole to scan the fluid electric conductivity 

(FEC) as a function of depth.  This produces what is known as an FEC log.  With constant 

pumping conditions, a series of five or six FEC logs are typically obtained over a one- or two-

day period.  At depth locations where water enters the borehole (the feed points), the FEC logs 

display peaks.  These peaks grow with time and are skewed in the direction of water flow.  By 

analyzing these logs, it is possible to obtain the flow rate and salinity of groundwater inflow 
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from the individual fractures.  The method is more accurate than spinner flow meters and much 

more efficient than packer tests (Tsang et al., 1990). 

Although we often refer to feed points as representing flow through hydraulically 

conductive fractures, they can just as easily represent flow through any permeable zone that 

intersects the wellbore section being logged.  In heterogeneous porous media such as alluvial 

systems composed of interspersed sand and clay lenses, flow can be just as localized as in 

fractured rock, and the need for identifying permeable strata just as great.  The method 

developed in this paper is equally applicable to such heterogeneous media.  

Figure 1.1 shows a typical series of FEC logs obtained from a 230 m well (Colog, Inc., 

personal communication, 1999).  Key features apparent in the logs include (a) an isolated peak at 

a depth of 164 m with an unusually sharp upper limb; (b) several interfering peaks in the depth 

range of 174–187 m; and (c) an overall downward propagation of peaks below a depth of 164 m.  

The goal of the present study is to investigate the typical signatures in FEC logs produced by 

different combinations of feed points and flow conditions.  Further, integral measures will be 

derived from the FEC logs, to facilitate analysis of logs such as these. 

Existing tools for analyzing flowing wellbore FEC logs include analytical solutions, 

numerical modeling, and integral approaches.  Simple analytical solutions based on mass 

balances can be used to infer feed-point properties at early times before peaks interfere with each 

other (Tsang et al., 1990); under steady-state conditions when peaks fully interfere (Tsang et al., 

1990); and for the special case of horizontal flow  (Drost et al., 1968).  These solutions provide 

useful information when used as part of a more sophisticated analysis (as described in Section 2), 

but by themselves are too simplistic for most real-world problems.   
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The numerical model BORE (Hale and Tsang, 1988; Tsang et al., 1990) and the recently 

enhanced version BORE II (Doughty and Tsang, 2000) calculate the time evolution of ion 

concentration (salinity) through the wellbore, given a set of feed-point locations, strengths, and 

concentrations (i.e., the forward problem).  BORE II broadens the range of applicability of the 

analytical solutions described above by considering multiple inflow and outflow feed points, 

isolated and overlapping FEC peaks, early-time and late-time behavior, time-varying feed-point 

strengths and concentrations, and the interplay of advection and diffusion in the wellbore.  The 

Appendix presents the governing equations used by BORE II.  Using BORE II to match 

observed FEC profiles (the inverse problem) requires the trial-and-error adjustment of feed-point 

parameters.  This can be a difficult and time-consuming process, especially for noisy data.  

Several integral approaches have been developed (Tsang and Hale, 1989; Loew et al., 1990) that 

can provide good initial guesses to BORE, greatly enhancing its ease of use.  However, these 

methods are limited to wellbore sections containing inflow points only.  Thus, for example, they 

are not applicable to cases of horizontal flow across the well diameter or internal wellbore flow. 

The motivation for the current investigation of feed-point signatures is threefold.  First, 

we want to develop a method for making zero-order parameter estimates for the general case in 

which inflow and outflow points exist.  These can be used as good initial guesses for BORE II, in 

order to expedite the analysis of wellbore FEC logs.  Second, we want to obtain physical insight 

into the nature of the feed points from particular features or signatures in the FEC logs.  Third, 

we want to determine the optimal scheme for collecting new data by investigating how the 

choice of pumping rate can enhance feed-point signatures.  Differences in feed-point strengths 

among various permeable layers or fractures reflect differences in local hydraulic transmissivity 
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values or pressures or both, and by varying the pumping rate we can discriminate between these 

cases. 

In Section 2, we examine the typical signatures observed in a wellbore FEC log, and 

determine what they tell us about the feed-point parameters.  For inflow points we look at the 

FEC profile itself, while for outflow points we introduce an integral analysis.  Section 3 

investigates the effect of pumping rate on these signatures, both to decide on the optimal 

pumping rate for log interpretation and to investigate the nature of feed points.  Section 4 

illustrates the application of the techniques by analyzing FEC logs obtained from two field sites.  

Section 5 summarizes the material and presents some concluding remarks. 

2. Signatures of Inflow and Outflow Points 

The signatures of individual inflow feed points and various combinations of inflow and 

outflow feed points contain both qualitative and quantitative information about the feed-point 

parameters, which can be used to improve the initial parameter values for a BORE II simulation.  

In these discussions, we refer to concentration profile C(x), which is the ion concentration of 

borehole fluid as a function of depth x.  The conversion of an FEC log, σ(x), to a concentration 

profile, C(x), is described in the Appendix.  Boreholes that contain only inflow feed points 

produce the most straightforward C(x) signatures.  The signatures of outflow feed points are 

generally difficult to see in the C(x) profiles, and therefore a more elaborate mass-integral 

technique has been developed for cases in which both inflow and outflow points exist.   

2.1  Concentration Profiles 

The four quantities that need to be determined for each feed point are location xi, inflow 

or outflow rate qi (positive for inflow and negative for outflow), and, for inflow points, 



                                                            6 

concentration Ci and the time t0i at which feed-point concentration first differs from the initial 

wellbore concentration C0.  Often t0i = 0, but a non-zero value can occur if de-ionized water 

migrates into the fracture during the initialization phase of replacing borehole water prior to 

wellbore logging, or if wellbore logging takes place during a tracer test in which a saline tracer 

arrives from a nearby well or source.   

2.1.1  Inflow Points 

Figure 2.1 shows a series of idealized concentration profiles simulated with the numerical 

model BORE II, using feed points with constant qi > 0, constant Ci > C0, and t0i = 0.  Factors 

such as upflow from the bottom of the wellbore section, time-dependent feed points, inflow 

points with Ci = C0, and outflow points are discussed separately in later subsections.   

The first step is to locate the feed points.  Inflow points can usually be located fairly 

accurately from early-time concentration profiles, when each inflow point produces a small, 

isolated concentration peak.  In the calculated example shown in Figure 2.1, inflow points are 

apparent at depths of 60, 90, and 120 m (see also Figures 4.1 and 4.5 for field examples).  

For inflow points, the estimation of qi and Ci is best done concurrently, because these 

quantities have a coupled effect on C(x).  For early-time data, before inflow peaks begin to 

interfere with each other, mass conservation requires that at time t, the ion mass represented by 

the ith concentration peak, Mi(t), be given by 

Mi(t) = qiCit.          (2.1) 

Therefore, the area under the ith C(x) peak can be expressed as 
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where r is the wellbore radius.  Calculating Ai by numerically integrating the C(x) profile in the 

vicinity of the ith feed point, at a series of times, can be done to estimate the product qiCi and to 

verify that it is constant in time.  Very early profiles, which show small peaks, generally provide 

less accurate integrals than do larger peaks.  As a rule, the largest noninterfering peaks should be 

used to estimate the qiCi product.  Table 2.1 summarizes the qiCi products obtained for the peaks 

shown in Figure 2.1. 

At intermediate times, because the well bottom is closed to flow, peaks become skewed 

toward the top of the well.  In principle, such skewness can be used to separate qi and Ci.  This 

can be done by fitting to numerical results from BORE II in which qi and Ci are varied, while 

keeping their product constant. 

At late times, the concentration profile reaches a steady-state condition consisting of a 

series of steps with concentration Cmaxi, each associated with an inflow point.  For the lowest 

inflow point (x1, q1, C1) in a wellbore section closed at the bottom, the steady-state concentration 

Cmax1 is equal to C1.  Mixing rules dictate that the second-lowest inflow point (x2, q2, C2, with x2 

< x1) has Cmax2 given by 

21
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Generally, for the ith inflow point, 
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where the sums are taken over all feed points with xj ≥ xi.  This expression can be solved for qi,  
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where the j sum is taken over all feed points with xj ≥ xi and the k sum is taken over all feed 

points with xk > xi.  Finally, we determine Ci from the qiCi product and qi: 

i

ii
i q

CqC )(
= .          (2.6) 

Hence, observing Cmax1 gives us C1, and using the value of the q1C1 product from the 

early-time data determines q1.  Then, knowing q1C1, q2C2, q1, and Cmax2 enables us to determine 

q2 and C2.  We continue this way up the wellbore section until all feed-point properties are 

determined.  Table 2.1 summarizes the Cmaxi, qi, and Ci values for the feed points shown in 

Figure 2.1.  Note that any errors introduced at lower feed points influence the results for 

shallower feed points, so the accuracy of the properties may decrease as we move up the 

wellbore.  A consistency check is provided by comparing the sum of all the feed-point inflow 

rates Σqi to the pumping rate from the top of the wellbore section Q, which is a known quantity 

prescribed as part of the logging procedure.  If these two quantities do not agree, there are two 

possible remedies.  If all the feed points show equally good plateaus, then all the inflow rates can 

be scaled by Q/Σqi.  On the other hand, a common situation is for logging to end before the 

uppermost (Nth) peak reaches steady state, in which case Q can simply be used in place of Σqi in 

Equation (2.4) to determine CmaxN.  Note particularly that to use Q as a constraint, care must be 

taken that it does not include unknown contributions from inflow into the wellbore above the 

logged section being analyzed.  This can easily happen in actual field conditions. 

If we have reason to believe that the Ci for all inflow points are the same (say Ci = C), 

then Equation (2.4) gives Cmaxi = C, implying that steady-state concentration profiles do not 

provide any new information.  In fact, for this special case, it is possible to determine all the qi 

values and C from early-time profiles only.  First, the early-time profiles are used to determine 
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the qiC product for each feed point as usual.  Then, the equation Q = Σqi is multiplied by C on 

both sides, 

∑∑ == CqqCCQ ii         (2.7) 

and solved for C  

Q
Cq

C i∑= .          (2.8) 

Finally, Equation (2.6) is used to determine each value of qi from the qiC product and C. 

Another potential simplification occurs if the feed points are far enough apart for C(x) 

plateaus to develop before the peaks begin to interfere with one another, as shown for the two 

shallower peaks in Figure 2.1a at 90 minutes and in Figure 2.1b at 0.1 day.  The isolated plateau 

concentration is denoted Cmidi, and is given by an equation similar to Equation (2.4) for Cmaxi 

∑
=

j
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where the denominator sum runs over all xj ≥ xi.  Expressions for qi and Ci analogous to 

Equations (2.5) and (2.6) follow directly, enabling determination of qi and Ci for the ith peak, 

given Cmidi and the qiCi products for the ith and all deeper peaks.  Note that for the lowest peak, 

Cmid1 = Cmax1 = C1.  

2.1.2  Upflow from Below 

Upflow from below can occur when the bottom of the wellbore interval being 

investigated is not the actual bottom of the well and is not sealed with a packer.  If upflow from 

below has a distinctive salinity, it can be treated as any other inflow point, but if it has salinity 
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C0, it will not produce a peak of its own and its presence must be inferred from its influence on 

the other peaks.  Figure 2.2 shows the BORE II concentration profiles obtained using the same 

feed-point parameters as for Figure 2.1, but with the addition of upflow from below at a rate qw 

and a concentration C0.  Comparing Figures 2.2 and Figure 2.1 shows that the peaks are all more 

strongly skewed upward when qw > 0.  The most evident change occurs at the lower limb of the 

lowest peak, which shows a diffusive profile when qw = 0 (Figure 2.1) and a combination of 

advection and diffusion when qw > 0 (Figure 2.2).  Integration under the early-time C(x) peaks 

provides qiCi estimates as before, despite the asymmetric shape of peaks, but, since the peaks 

interfere sooner, care must be taken in the choice of the profiles to integrate.   

The steady-state mixing rule for the ith feed point becomes 

∑
∑
+

=
jw

jj
i qq

Cq
Cmax ,         (2.10) 

where as before, the sums are taken over all feed points with xj ≥ xi.  If the peaks develop 

plateaus before they begin to interfere with one another, Equation (2.9) for Cmidi can be modified 

by adding qw to the denominator.  In either case, we have a system of equations with one more 

unknown than number of equations (if Q is not used); therefore, we cannot determine all the 

feed-point parameters individually.  However, we can determine the sum q1 + qw and individual 

values of qi and Ci for feed points above the lowest one.  We still have Cmid1 = Cmax1, but with a 

non-zero qw, Cmax1 ≠C1.  Comparing the different Ci values might provide insight into the likely 

range for C1, enabling an estimate of q1 to be made.  Furthermore, if we have an independent 

estimate of C1, q1, or qw, then we can determine the remainder of the feed-point parameters.  As 

before, wellbore pumping rate Q may be used to constrain feed-point properties by requiring Q = 
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qw + Σqi, where the sum runs over all feed points.  Again, in doing this care must be taken that Q 

does not include unknown possible inflows into the wellbore above the logged section.   

2.1.3  Time-Dependent Feed Points 

Time-dependent values of qi and Ci most commonly arise when pumping rates are altered 

or tracers are introduced in nearby wells.  However, they can also represent actual physical or 

chemical variations in the rock near the borehole.  Figure 2.3 shows the BORE II concentration 

profiles for a single inflow point in which feed-point concentration is either constant at C1 

(Figure 2.3a), increases linearly from 0 to C1 (Figure 2.3b), or decreases linearly from C1 to 0 

(Figures 2.3c and d).  A decreasing feed-point concentration provides a distinctive concentration 

profile signature, particularly when combined with upflow.  In contrast, the profiles for 

increasing feed-point concentration or increasing feed-point inflow rate (not shown) may be 

difficult to distinguish from those for a constant feed point.  For early times, before the profiles 

for adjacent inflow points begin to interfere with each other, we can generalize Equation (2.1) for 

Mi(t) to obtain 

∫=
t

iii dttCtqtM
0

')'()'()( .        (2.11) 

Hence, the slope of the Mi(t) versus t curve gives qi(t)Ci(t).  This approach does not distinguish 

between time dependencies in qi or Ci separately, but the skewness of  concentration peaks, 

which depends only on qi, may provide insight into qi and Ci time variations.  If either qi or Ci is 

known to be constant, then Equation (2.11) can be used to calculate the time dependence of the 

other quantity.   



                                                            12 

A common feed-point time dependence, which arises if de-ionized water migrates into 

the fracture during the replacement of borehole water prior to wellbore logging, is for both qi and 

Ci to be constant after a time t0i, but to have Ci = C0 before t0i.  In this case, it is generally 

possible to estimate t0i along with qiCi by integrating over a series of profiles and fitting the 

resulting Mi(t) values to the linear relation 

Mi(t) = qiCi(t – t0i).           (2.12) 

2.1.4  Inflow Points with Ci = C0 

It may happen that the initial wellbore ion concentration is similar to some of the feed 

point concentrations, i.e., for some feed points, Ci = C0.  An inflow point with Ci = C0 does not 

produce a concentration peak of its own, but its effect on neighboring peaks may be visible.  

Figure 2.4 shows the BORE II concentration profiles for two inflow points, one of which has Ci 

= C0.  In each of the four examples in Figure 2.4, the inflow rate of the Ci = C0 inflow point is 

twice that of the adjacent inflow point.  If the Ci = C0 inflow point is above (downstream of) the 

other inflow point, there is a subtle signature in the form of a break in slope of the concentration 

profiles when the diluting effect of the Ci = C0 inflow is first felt (Figure 2.4a).  This break in 

slope is accentuated if an upflow from below is present (Figure 2.4b).  At late times, the Ci = C0 

inflow point causes a distinctive plateau (Figure 2.4c).  If the Ci = C0 inflow is below (i.e., up-

stream of) the other inflow point, the break in slope is difficult to see (Figure 2.4d).  The 

concentration profile is skewed upward as when an upflow is present; this identifies the existence 

of a Ci = C0 inflow, but not its location. 
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2.1.5  Outflow Points 

Outflow may occur when the far-field heads in certain fractures or permeable zones 

penetrated by a wellbore are different.  When the well is shut in or is pumping at a very low rate, 

water flows into the wellbore from the higher head zone, is transmitted through the wellbore, and 

flows out into a lower-head zone.  Figure 2.5 shows the BORE II concentration profiles for an 

outflow point located adjacent to an inflow point.  In each example, the outflow strength is twice 

the inflow strength.  The outflow points cause subtle changes in the shape of the peaks, but these 

changes do not identify the outflow location well.  The addition of an upflow changes the peak 

shape, but does not help pin down the outflow location.  An integral method that can estimate the 

outflow location is presented in the next section. 

Figure 2.6 shows the BORE II concentration profiles for inflow and outflow points 

located farther apart, with profiles collected frequently enough to monitor the movement of the 

concentration front up the wellbore.  In this case, q1 ≡ qin, q2 ≡ qout, and qw all have the same 

magnitude and qout = –qin, so the speed of the front is halved as it passes the outflow point.  By 

examining the spacing between concentration profiles obtained at known time intervals, the 

location of the outflow point can be inferred. 

2.1.6  Horizontal Flow 

Measurement of horizontal flow across the wellbore is important because it can be used 

to estimate the natural regional flow in the hydrologic layer (Drost et al., 1968).  In our case, 

horizontal flow can be represented with a pair of inflow and outflow feed points located at the 

same depth, with q1 ≡ qin = Q0 and q2 ≡ qout = −Q0, where Q0 is the volumetric flow rate across 

the wellbore.  Q0 can be related to the regional Darcy velocity vd in the layer intercepted by the 
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wellbore using Q0 = vd2rbαh, where r is the wellbore radius, b is the thickness of the hydrologic 

layer, and αh is a dimensionless convergence factor ranging from 1 to 4, which depends on well 

completion (Drost et al., 1968).  Figure 2.7 compares the BORE II concentration profiles for 

several horizontal-flow cases with the corresponding case in which only an inflow feed point 

with strength qin is present.  Unlike previous plots that show successive concentration profiles at 

equally spaced time intervals, here the time interval doubles between each successive profile, to 

enable both early- and late-time behavior to be illustrated in a single plot.  At early times, the 

concentration profiles for inflow and horizontal flow are similar, both showing symmetric 

profiles.  At later times, the horizontal-flow profiles remain symmetric, whereas the inflow 

profiles become skewed up the wellbore.  Peak concentration increases faster with inflow only, 

but in the absence of longitudinal diffusion, the steady-state concentration Cmax would be C1 ≡ 

Cin for both cases.   

Figures 2.7a and 2.7b depict a typical situation in which diffusion along the wellbore is 

moderately strong compared to horizontal-flow or inflow strength (practically, the movement of 

the conductivity logging tool up and down the wellbore greatly enhances the longitudinal 

diffusion coefficient D0 over the value for still water).  Figures 2.7c and 2.7d illustrate how the 

concentration profiles sharpen when D0 is very small.  Figures 2.7e and 2.7f show the profiles for 

thick layers of inflow and horizontal flow, modeled by placing multiple inflow points or 

inflow/outflow pairs over a range of x values.  The value of D0 is moderate, as in Figures 2.7a 

and 2.7b, but at the center of the flow layer it has little impact, allowing the concentration 

profiles to reach Cmax = Cin.  The black dots on the horizontal-flow profiles in Figure 2.7f show 

the concentration given by an analytical solution (Drost et al., 1968) that considers horizontal 

flow only (i.e., longitudinal diffusion is negligible or the hydrologic flow layer is very thick):   
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The BORE II simulation of a thick horizontal-flow layer matches the analytical solution well.  

Figure 2.8 shows C(t)/Cin at the center of the flow layer as a function of time for the cases shown 

in Figures 2.7b, d, and f, as well as for a thick layer with very small D0 and the Drost et al. 

(1968) solution itself.  Both thick-layer cases follow the analytical solution closely, regardless of 

the value of D0 applied, and the thin-layer case with very small D0 shows similar behavior.  

However, for a thin layer (such as a narrow conducting zone or a single fracture) with a realistic 

value of D0, the peak concentration grows much more slowly.  Diffusion plays a significant role, 

decreasing the concentration at the feed-point concentration by effectively mixing formation 

water with wellbore water.  In this case, matching with BORE II will yield a more accurate 

estimate of horizontal flow than Drost’s solution.   

2.2  Mass Integrals 

The examples of concentration profiles shown in the previous section indicate that in 

general, outflow points do not produce a strong signature that enables them to be easily located.  

Here, we describe an integral procedure that enables outflow points to be located by examining 

changes in ion mass in the wellbore section.  

Consider a wellbore section with one or more outflow points above one or more inflow 

points.  Let us assume feed-point strength and concentration do not vary in time.  The procedure 

is as follows.  We integrate each C(x) profile over the entire wellbore section of interest to obtain 

the area A(t) under the C(x) profile at time t (including all peaks, whether or not they interfere).  

Then, we multiply A(t) by the mean wellbore cross-sectional area to determine ion mass in place 
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at time t, which we denote as the mass integral M(t), and plot M(t) versus t.  Note that before the 

concentration front reaches any outflow points, M(t) is linear, with slope  

Searly = ∑
in

iiCq .           (2.14) 

When the concentration front reaches an outflow point, the slope of M(t) decreases, since ion 

mass leaves the wellbore at that point.  When the concentration front passes the uppermost 

outflow point, M(t) becomes linear again, with slope  

Slate = ∑∑ ∑ −=−
out

ii
in out

iii qCSCqCq maxearlymax ,     (2.15) 

where Cmax is the maximum concentration over the entire concentration profile.  To determine 

the aggregate outflow rate, we rearrange Equation (2.15) to yield 

maxC
SS

q lateearly
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i

−
=∑ .         (2.16) 

Now, let us examine the C(x) profiles and locate the times when (a) M(t) becomes nonlinear and 

(b) M(t) becomes linear again.  The leading edge of the concentration front at (a) identifies the 

deepest outflow point, xmax.  The trailing edge of the concentration front at (b) identifies the 

shallowest outflow point, xmin.  Here, we define the leading edge as the x location at which C(x) 

= 0.1Cmax and the trailing edge as the x location at which C(x) = 0.9Cmax. 

An example of the mass-integral procedure for early-time concentration profiles is shown 

in Figure 2.9.  We consider a single inflow point located below a single outflow point in a 

wellbore section with upflow from below.  The BORE II concentration profiles (Figure 2.9a) 

contain a minor break in slope at the outflow point, which would probably be impossible to 

identify in real data.  In contrast, the mass-integral plot (Figure 2.9b) shows a clear divergence 
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from linearity between t = 0.4 and t = 0.6 days.  Returning to the C(x) profiles, we find that the 

leading edges of the t = 0.4-day  and t = 0.6-day profiles lie at x = 84  and x = 82.5 m, 

respectively.  Since the t = 0.4-day integral fits the linear M(t) trend but the t = 0.6-day integral 

does not, we infer that the outflow point occurs at 82.5 ≤ x ≤ 84 m.  The actual location of the 

outflow point is 84.5 m.  Hence the M(t) method, while not perfect, does provide useful 

information for outflow-point location.  

Another example, this time considering long-time concentration profiles, is shown in 

Figure 2.10.  We consider two inflow points located below two outflow points in a wellbore 

section with upflow from below.  The BORE II concentration profiles (Figure 2.10a) show 

interference between two inflow peaks, which makes it difficult to simply locate the outflow 

points by inspection.  The mass-integral plot (Figure 2.10b) shows early-time and late-time linear 

sections, with a slight departure from linearity for t = 0.3 days and a return to linearity by t = 0.7 

days.  The leading edge of the t = 0.3-day profile lies at x = 65 m, suggesting that the deepest 

outflow point is just below this depth.  The trailing edge of the t = 0.07-day profile lies at x = 50 

m, suggesting that the shallowest outflow point is just below this depth.  These predictions are 

reasonably close to the actual locations of the outflow points, 70.5 and 50.5 m.  Using Equation 

(2.16) with the values of Searly, Slate, and Cmax shown in Figure 2.10 yields an aggregate outflow 

rate of 1.48 L/min, which agrees closely with the actual value, 1.5 L/min. 

Note that in theory, if two outflow points are separated by a large enough distance, a 

linear portion in the M(t) plot will develop when the concentration fronts are between the two 

points, potentially enabling the locations and strengths of the individual points to be determined.  

However, if the two points are separated by a distance comparable to or less than the width of the 

concentration fronts, as in Figure 2.10, the M(t) method will not be able to resolve them.    



                                                            18 

3.  Effect of Pumping Rate  

The previous section showed that the flow rate in the wellbore interval of interest has a 

strong effect on the signature of the peaks.  Since we have control of the flow rate through the 

selection of the well pumping rate Q for a given conductivity log, the choice of Q or the use of 

two logging runs with different Q values may be used to improve the accuracy of parameter 

determination.  To study this effect systematically, we need to understand how feed-point 

strength changes when Q is modified.  This dependence is derived below for several practical 

cases of interest, followed by examples illustrating how Q affects C(x) profiles and M(t) 

integrals.  We then discuss how modifying Q may be used to investigate the nature of the feed 

points. 

3.1  How Feed-Point Strength Depends on Q 

We consider a wellbore interval containing N feed points.  The strength of the ith feed 

point is qi and Σqi = Q.  By convention, inflow points have positive qi and outflow points have 

negative qi.  Upflow from below can be absent (i.e., the lower end of the studied interval is the 

well bottom or sealed by a packer) or represented by one of the N feed points (upflow is positive 

and downflow negative).  For each feed point, qi and concentration Ci are assumed to be constant 

in time.  The strength of a feed point is related to its hydraulic transmissivity Ti
*, the “far-field” 

pressure Pi a distance ri away from the wellbore, and the pressure Pwb at the wellbore radius r 

through Darcy’s law.  Assuming steady radial flow into the wellbore, 

)(
)/ln(

)(2 *

wbii
i

wbii
i PPT

rr
PPTq −=

−π
= ,       (3.1) 
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where Ti represents an effective hydraulic transmissivity, into which the constant factors 

involving radial distance have been lumped.  Ti is introduced to simplify notation.  For the 

special case of horizontal flow with net qi = 0, the log dependence on r is replaced by a linear 

dependence, but the right-side form (containing only Ti and pressure) is unchanged.  We assume 

that the hydraulic transmissivity within the wellbore itself is much greater than that of any inflow 

zone, so that Pwb is constant over the wellbore interval of interest.  Since Σqi = Q, we can write 

∑ −= )( wbii PPTQ .         (3.2) 

If we now alter the pumping rate from Q to Q', Ti and Pi remain unchanged but Pwb becomes 

Pwb', and 

qi' = Ti(Pi – Pwb')         (3.3) 

∑ −= )'(' wbii PPTQ .         (3.4) 

We solve Equation (3.4) for Pwb' and substitute into Equation (3.3), yielding an expression for qi' 

in terms of Q': 
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Adding and subtracting the term TiPwb to Equation (3.5) and then substituting from Equations 

(3.1) and (3.2), we obtain 

∑
−
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i

i
ii T

QQTqq )'(' .         (3.6) 

Defining ∆qi = qi' – qi, ∆Q = Q' – Q, and Ttot = ΣTi yields the more compact form 
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tot

i
i T

QTq ∆
=∆ ,          (3.7) 

which is the fundamental relationship between the change in feed-point strength ∆qi and the 

change in pumping rate ∆Q.  Note that ∆qi is directly proportional to Ti, and thus the feed points 

with larger hydraulic transmissivity show greater changes in strength when Q is modified.  In 

particular, if the jth feed point has a much larger hydraulic transmissivity than all the others (Tj ≈ 

Ttot), then ∆qj ≈ ∆Q and all the other feed-point strengths will not change much.  This situation 

might arise if the well intercepts an extensive inflow zone that has not been excluded from the 

logging section by packers. 

There are several special cases of Equation (3.7) that are of interest.  If all the Ti’s are the 

same, then Ti = Ttot/N, and Equation (3.7) simplifies to 

N
Qqi

∆
=∆ ,          (3.8) 

where N is the number of feed points.  In this case, when Q is modified, all feed-point strengths 

change by the same amount.   

A particular case of the equal Ti condition is horizontal flow across the wellbore, where Q 

= 0, N = 2, qin = Q0, and qout = −Q0.  Thus, if pumping is added to a horizontal-flow case (∆Q > 

0), inflow points become stronger (qin' = Q0 + ∆Q/2) and outflow points become weaker (qout' = 

−Q0 + ∆Q/2).  When ∆Q/2 > Q0, qout' changes sign and the outflow points become inflow points.  

For a thick layer, N can be any even number.  In that case, initially Q = 0, qin = 2Q0/N, qout = 

−2Q0/N, and then when pumping at rate ∆Q is imposed, qin' = (2Q0 + ∆Q)/N and qout' = (−2Q0 + 

∆Q)/N. 
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On the other hand, if the Pi’s are all the same, then we solve Equation (3.1) for Ti and 

substitute into Equation (3.7) 
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.        (3.9) 

Note that when all Pi’s are the same, feed points must be either all inflow points or all outflow 

points, and there can be no horizontal or internal flow.  In this case, when Q is modified, the 

relative change of each feed point ∆qi/qi is the same and is equal to the relative change of Q, 

Q
Q

q
q

i

i ∆
=

∆ .          (3.10) 

Thus, feed points can only change sign if Q changes sign (i.e., pumping becomes injection), and 

then they all will change sign, again precluding horizontal or internal flow.   

Finally, if all the Ti’s are the same and all the Pi’s are the same, then according to 

Equation (3.1), all the qi’s must be the same.  Thus, qi = Q/N, and Equations (3.8) and (3.9) 

become equivalent. 

3.2  Examples of How Modifying Q Affects C(x) and M(t) Signatures 

Running FEC logs with two or more values of Q (for example, halving and doubling the 

original pumping rate) should provide a means to better characterize the feed points for cases 

with inflow points only, cases with both inflow and outflow points, and for the special case of 

horizontal flow. 

Figure 3.1 shows the effect of increasing Q on a single inflow point with a constant 

strength and concentration.  With a low Q (Figure 3.1a), only the qinCin product can be 

determined.  With a larger Q (Figure 3.1b), evidence of the Cmax plateau develops at an earlier 
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time, enabling determination of Cin and qin independently.  Note that, in the absence of 

longitudinal diffusion, increasing or decreasing Q would be completely equivalent to logging for 

a longer or shorter period of time, respectively.   

Figure 3.2 shows the effect of modifying Q when both inflow and outflow points are 

present and all Ti’s are the same.  For the original Q value (Figure 3.2a), the outflow point 

produces only a subtle change in slope in the M(t) plot, making the mass-integral procedure 

difficult.  If Q is halved (Figure 3.2b), the change in slope becomes larger and the analysis 

becomes straightforward.  On the other hand, if Q is doubled (Figure 3.2c), the outflow point 

becomes an inflow point and is easily identified in the early-time C(x) profiles as another peak. 

Finally, if Q is reduced to zero (Figure 3.2d), then the outflow point must capture all the flow in 

the wellbore, and again the C(x) profiles would provide a strong signature of the outflow point.   

Figure 3.3 shows the effect of increasing Q on a thin layer with horizontal flow, where 

initially (Figure 3.3a) Q = 0, qin = Q0 and qout = –Q0.  The Ti’s for the inflow and outflow points 

are the same, and hence, as Q is increased from zero, the magnitude of qin increases and the 

magnitude of qout decreases (Figures 3.3b and 3.3c).  When Q = 2Q0, outflow vanishes (Figure 

3.3d), and when Q > 2Q0, the outflow point becomes an inflow point.     

Figure 3.4 shows the effect of increasing Q on the horizontal-flow case when an upflow 

from below qw accompanies the increase in Q.  We assume that when Q = 0, qw = 0, qin = Q0, qout 

= –Q0, and the concentration profiles are as shown in Figure 3.3a.  One possible approach is to 

consider qw as arising from a single deep feed point with a T value equal to that of the 

inflow/outflow pair used to model horizontal flow (Figures 3.4a, c, and e).  As Q is increased, ∆q 

= ∆Q/3 = Q/3 for each of the three feed points, so the inflow strength and upflow increase while 

the outflow strength decreases.  The steady-state plateau concentration is given by 
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Another approach is to associate upflow with a very large T value, which is equivalent to 

considering upflow as arising from many individual feed points or an extensive inflow zone 

(Figures 3.4b, d, and f).  In this case, the increase in Q is largely maintained by an increase in 

upflow, with the inflow and outflow strengths remaining at +/–Q0, which leads to a much lower 

plateau concentration 
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Hence by varying Q, we can learn something about the nature of the upflow from below.  This 

procedure can also be applied to individual feed points, as described in the following section. 

3.3  Investigating Feed-Point Nature by Analyzing FEC Logs with Two or More Q’s 

When wellbore FEC logging is done using a single pumping rate Q, we can determine 

feed-point strengths qi by investigating C(x) and M(t), as described in Section 2.  However, 

without additional information, we do not know whether differences between qi values arise 

from differences in Ti or in Pi or in both (see Equation (3.1)).  However, Equations (3.7) through 

(3.9) indicate that the change in qi arising from a change in Q depends on how Ti and Pi differ 

between feed points.  Thus, by repeating FEC logging using a different value of Q, we can infer 

more information about the feed points (as well as confirming analysis of single-Q FEC logs). 

For example, if the change in feed-point strength ∆qi is the same for all feed points when 

Q is changed, then according to Equation (3.8), all the Ti’s are the same, and differences between 

qi’s arise from differences between Pi’s (i.e., qi ~ Pi).  A more common situation is for all the Pi’s 
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to be the same and for differences between qi’s to arise from differences between Ti’s (i.e., qi ~ 

Ti).  In this latter case, Equation (3.9) predicts that the relative change in feed-point strength 

∆qi/qi will be the same for all feed points when Q is changed.  If neither ∆qi nor ∆qi/qi are the 

same for all feed points, then differences between qi’s comes from differences between both Ti’s 

and Pi’s.  Figure 3.5 illustrates this behavior. 

In general, we can rearrange Equation (3.7) to isolate the known quantities on the left-

hand-side 

tot

ii

T
T

Q
q

=
∆
∆ ,          (3.13) 

which indicates that the fractional change in pumping rate exhibited by a feed point equals the 

fractional hydraulic transmissivity of the feed point.  Similar information about the differences 

between the Pi’s may be obtained as follows.  We can rewrite Equation (3.2) for Q as  

∑ −=−= )()( wbavgtotwbii PPTPPTQ ,       (3.14) 

where Pavg, defined as  

tot

ii
avg T

PT
P ∑= ,         (3.15) 

is the hydraulic-transmissivity weighted average feed-point pressure.  Rearranging Equation 

(3.14) yields 

wbavg
tot

PP
T
Q

−= ,          (3.16) 

rearranging Equation (3.1) yields 



                                                            25 

wbi
i

i PP
T
q

−= ,           (3.17) 

and taking the ratio yields 
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Eliminating Ttot/Ti by using Equation (3.13) gives 
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All the terms on the left-hand-side are known; hence, the relative pressure difference driving 

flow into or out of the wellbore at the ith feed point can be determined.  Note from Equation 

(3.16) that when Q = 0, Pavg = Pwb.  That is, Pavg is the pressure that would be measured in the 

wellbore when there is no pumping, only internal wellbore flow between feed points with 

different values of Pi.   

Determining the values of Ti (Equation 3.13) and Pi (Equation 3.19) relative to the values 

of other feed points is the most information we can glean using FEC analysis itself.  However, if 

the wellbore pressure change during FEC logging (Pavg - Pwb) is monitored, then Equation (3.16) 

may be used to determine Ttot, enabling Equation (3.13) to determine individual Ti values 

uniquely.  If, additionally, the value of Pwb itself is monitored, then the Pi values may be 

determined from Equation (3.19).  In practical field conditions, it is indeed straightforward to 

monitor wellbore fluid pressures. 

The results from two fluid logging tests with different pumping rates potentially provide 

a powerful way of determining Ti and Pi values for all feed points, relative to those of one feed 
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point.  Thus, we consider two distinct feed points, i and j, write Equations (3.13) and (3.19) for 

each one, and take the ratio: 

j
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The ∆q values and q/∆q ratios on the left-hand-sides are easily identifiable in Figures 3.5b and 

3.5c, respectively.  In practice, if Tj and Pj are known for one feed point, say from a packer test 

either before or after the fluid logging, then the Ti and Pi values for all the rest of the feed points 

can be obtained simply from Equations (3.20) and (3.21).  Note that these equations consider 

only two feed points at a time, as opposed to Equations (3.13) and (3.19), which include 

quantities that represent all the feed points (Q, ∆Q, Ttot, and Pavg), with more possibilities of 

introducing inaccuracies under imperfect, real-world conditions. 

4.  Application to Real Data 

4.1  Raymond Field Site 

At the Raymond field site, located in the foothills of the Sierra Nevada mountains in 

California, nine wells were drilled that penetrated a fractured granodiorite.  The wells are 90 m 

deep and are cased over the upper 8 m through a sediment layer, then open below that.  Many 

different kinds of well logs and well tests have been conducted in these wells, to develop and test 

equipment and methodologies for characterizing the hydrological behavior of fractured rock 

(Karasaki et al., 2000).  Flowing wellbore electrical-conductivity logging was carried out in 

seven of the nine wells (Cohen, 1995) using pumping rates ranging from 7 to 20 L/min.  Logging 
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was conducted while the tool was moved up and down the wellbore.  FEC profiles obtained 

during upward logging showed smeared-out, less well-defined peaks that are slightly offset from 

those obtained during downward logging, and are not used.  Six or seven downward logging 

profiles for increasing time were obtained for each well.  Because the wells are quite shallow, 

borehole temperatures do not vary much with depth, and FEC values do not need to be corrected 

for temperature variations (see Appendix).  FEC is converted to C using the quadratic 

relationship given in Equation (A.1).  Here, we present and analyze concentration profiles from 

the two wells at the Raymond site, labeled SW1 and W00, that show the most interesting 

signatures. 

Figure 4.1 shows the concentration profiles for well SW1.  Six inflow points can be 

identified.  The diffusive shape of the lower limb of the lowest peak (peak 1) suggests that qw = 

0.  Three peaks (Peaks 2, 3, and 4) show an approach to steady state, enabling estimates of Cmaxi 

to be made.  We ignore the shallowest peak (x = 2 – 8 m), which decays rather than grows, on the 

assumption that it is evidence of leakage around the casing rather than fracture flow.  Such 

leakage has been confirmed by field observations (Cohen, 1995).  Five of the peaks are well 

enough separated to use the area under the individual peaks to determine Mi(t), the mass arising 

from the ith feed point as a function of time (Figure 4.2).  We then fit a straight line to Mi(t) and 

use Equation (2.12) to identify the slope of the line as qiCi and the time-axis intercept as t0i.  In 

general, the late-time drop in Mi(t) below the linear fitting line does not identify outflow, as 

described in Section 2, but indicates the peak reaching the edge of the integration domain.  Note 

in Figure 4.1 that Peak 5 overlaps with Peaks 4 and 6 too early for the estimates of q5C5  and t05 

obtained from M5(t) to be reliable.  
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For Peak 1, the q1C1 product is well-defined, but there is no evidence of a Cmax1 plateau.  

Furthermore, the height of an isolated peak such as this is very sensitive to diffusion/dispersion 

strength D0, which is unknown.  Therefore, we search for C1 and D0 values by trial and error 

using the BORE II code, by comparing the observed C(x) profiles for Peak 1 to simulation 

results.   Once C1 and q1 have been found, Equations (2.5) and (2.6) can be used to calculate the 

parameters of the upper peaks.  Table 4.1 summarizes the results.  Recall that since Peak 1 

properties are not uniquely determined, those of all shallower peaks are uncertain too.  

Unfortunately, the shallow leakage around the casing precludes the use of Q to constrain the qi 

values.  Figure 4.3 shows C(x) profiles simulated with BORE II using the parameters given in 

Table 4.1.  The simulated profiles match the observed ones approximately, but there is room for 

improvement.  In particular, Peak 5 is much too small and there is generally not enough 

interference between the upper five peaks.  Because the peaks overlap relatively early, the Mi(t) 

integrals cannot extend as far along the wellbore as they should.  Thus, they tend to 

underestimate the qiCi products, which in turn leads to too-small values of qi.   

The parameter values shown in Table 4.1 are then optimized by data fitting using BORE 

II simulations.  Figure 4.4 shows the results of this fitting process, and Table 4.2 shows the 

corresponding feed-point properties.  Note that inflow point 4a with Ci = C0 has been added 

between Peaks 4 and 5, to account for the narrow peak and lower plateau above Peak 4 (compare 

to Figure 2.4).  With just this additional inflow, the upward flow through the wellbore at Peak 6 

is too big (Cmax6 is too small and the peak is too broad), so we also need to add outflow point 4b 

just below Peak 5.  Overall, the property changes required for the existing feed points are minor.  

Peak 5 is an exception, but examination of the C(x) profiles (Figure 4.1) made it clear a priori 

that this peak was too close to adjacent peaks to be well characterized. 
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It is interesting to note, from Table 4.2, the advantages of the flowing wellbore electric-

conductivity logging method.  From one set of data, obtained in only about one hour (Cohen, 

1995), we are able to identify the locations of eight conducting fractures intersected by the well, 

including one where the flow is out of the borehole to the fractures (feed point 4b in Table 4.2).  

The salinity of water from the seven inflow points varies by a factor of two, except for one point 

that has very low salinity.  Since we have the flow rates qi for these flowing fractures, their 

hydraulic transmissivities can be directly calculated, using the pressure drawdown in the 

wellbore measured during pumping.  Table 4.2 shows that variation of the hydraulic 

transmissivity (proportional to qi) covers a range of almost two orders of magnitude.  To obtain 

all this information using conventional packer methods (i.e., pump tests conducted in packed-off 

sections of the borehole) would require considerable more time and effort. 

The second set of data from the Raymond site analyzed with our methods are from Well 

W00.  Figure 4.5 shows the concentration profiles for this well.  Five peaks are apparent.  The 

lowest peak (Peak 1) does not show the upward skewing of a normal inflow point, but the more 

symmetric appearance of horizontal flow.  Peaks 2 and 3 interfere after a short time.  The long-

time behavior of Peak 4 suggests that there is a Ci = C0 inflow point above it (denoted feed point 

4a) that causes a decrease from Cmax4.  We ignore the non-uniform initial condition at shallow 

depths, because it is likely to represent sedimentary layers and leakage around the casing.   

Figure 4.6 plots Mi(t) versus t for Peaks 1 and 5 individually, for Peaks 2 and 3 

combined, and for Peaks 4 and 4a combined.  Results are shown in Table 4.3.  Because we 

consider Peak 1 to represent horizontal flow, which includes both inflow and outflow at the same 

depth, the M1(t) values obtained from the area under the peak do not directly determine the q1C1 

product.  Furthermore, because no Cmax1 plateau is visible, we need to fit q1 and C1 by trial and 
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error using BORE II simulations.  In contrast, for Peaks 2 and 3, we vary q2,3 ≡ q2 + q3 and C2,3 ≡ 

C2 = C3 while maintaining their product equal to the q2,3C2,3 value obtained from M2,3(t).  We 

then vary the manner in which q2,3 is allocated between Peak 2 and Peak 3.   

For Peak 4, we initially assumed that feed point 4a contributes a negligible amount to the 

q4C4 product, because C0 is small.  However, when we used q4 and C4 values consistent with the 

q4C4 product given in Table 4.3 for a BORE II simulation, we got much too large a peak (profiles 

not shown).  This suggests that the q4C4 product is not all associated with the feed point 4 

location.  If we look carefully at the early-time profiles in the vicinity of feed point 4a, we see 

some evidence for inflow with C > C0, which would contribute to the q4C4 product of the 

combined peaks.  The magnitude of the possible peak is much too small to produce a reliable 

estimate of the q4aC4a product, so we proceed as follows.  First, we determine q4 and C4 by trial 

and error with Bore II simulations, then multiply them to get the true value of q4C4, which is 

subtracted from the combined qC value given in Table 4.3.   The remainder is q4aC4a, which is 

used along with Cmax4a to determine q4a and C4a from Equations (2.5) and (2.6).  Peak 5 is then 

analyzed using Equations (2.5) and (2.6).  The resulting parameters are shown in Table 4.3 and 

the corresponding C(x) profiles are shown in Figure 4.7.  Above the feed point 4a, flow up the 

wellbore should be bigger and the early-time match for Peak 5 is not very accurate, owing to 

complications from the non-uniform initial conditions.  Overall, however, the procedure works 

reasonably well.  As for well SW1, additional trial-and-error parameter variations could be used 

in conjunction with BORE II simulations to improve the match. 

Now let us examine Peak 1 more carefully.  Figure 4.8 shows the same concentration 

profiles as Figure 4.7, but zooms in on the region around Peak 1.  It is apparent that the 

horizontal-flow model does not capture all the features of the observed data (Figure 4.8a).  If we 
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move the outflow point a few meters below the inflow point, then the pair represents internal 

downward flow through the wellbore rather than horizontal flow.  This feed-point configuration 

produces a slight downward skewing of the concentration peak at late times, consistent with the 

observed data (Figure 4.8b), but it does not significantly alter the early-time concentration 

profiles.  That is because the early-time simulated profiles reflect a short residence time in the 

wellbore, and the downward flow does not have time to affect them.  Figure 4.6 indicates that the 

M1(t) data can be fit equally well by a curve as by as a straight line.  Assuming a constant value 

of q1, the slope of the M1(t) fitting curve determines C1(t).  Using a variable C1(t) in BORE II 

simulations yields a better match to both early- and late-time profiles for Peak 1 (Figure 4.8c).  

The gradual increase in Ci implied by the nonlinear curve fit suggests a diffuse boundary 

between the native groundwater and the de-ionized water that entered the fracture during 

wellbore flushing prior to logging. 

4.2  Colog Field Site 

The FEC logs shown in Figure 1.1 are proprietary and the site geologic information is not 

made known to us.  Nevertheless they provide a good example of using the mass-integral method 

to identify the location and strength of an outflow point.  The FEC logs are converted to 

concentration profiles using the quadratic relationship given in Equation (A.1).  Figure 4.9a 

shows the C(x) profiles at a series of 12 times, and Figure 4.9b shows the corresponding M(t) 

integral for the entire wellbore section from x = 146 to x = 226 m, denoted M226.  The first two 

points on the M226 curve essentially represent the initial conditions, so they are not included in 

the early-time data fit to a straight line, which yields Searly = 0.081 kg/hr and t0 = 0.22 hr.  The 

initial deviation from linearity occurs at a time t = 1.6 hr.  According to Figure 4.9a, the 

concentration front at this time is at a depth of x = 212 m, which is inferred to be the outflow-
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point location, denoted xout.  Fitting the subsequent data to a straight line yields Slate = 0.059 

kg/hr.  Note that after a time of t = 2.6 hr, the concentration profiles do not show complete peaks, 

so subsequent points are not included in the fit.  Taking the Cmax value at t = 2.6 hr as 0.69 kg/m3 

in Equation (2.16), an outflow strength qout = 0.029 m3/hr = 0.49 L/min is obtained. 

An alternative procedure to determine qout involves correcting the mass integrals to 

account for the fact that the limits of integration (x1 and x2) do not include the entire 

concentration peaks (Tsang et al., 1990).  For the present case, when flow is downward, M226(t) 

= )(
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tM x  can be corrected by adding the ion mass that has flowed through the lower limit of 

integration, x2, in a time t:  
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where 
2xq is the volumetric flow rate down the wellbore at x2.  The left-hand-side can be 

represented by the late-time linear fit to )(
2

tM x , with slope Slate.  The space and time integrals on 

the right-hand-side can be obtained from the concentration profiles, leaving 
2xq  as the only 

unknown.  A practical procedure to determine 
2xq  is to plot both sides of the equation as a 

function of time and vary 
2xq  until the concentration data show a linear trend with a slope of Slate 

for all late times (Figure 4.9c).  The result is q226 = 0.75 L/min.  This procedure can be repeated 

at the location of the outflow point by replacing x2 with xout in Equation (4.1): 
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where 
outxq is the flow down the wellbore just above xout.  Figure 4.9b shows )(tM

outx , denoted as 

M212.  Since M212 is identical to M226 at early times, we use the early-time linear fit to M226(t) 

with slope Searly for the left-hand-side of Equation (4.3).  Plotting both sides of Equation (4.3) 

and adjusting 
outxq  until they match (Figure 4.9c), we obtain q212 = 1.25 L/min.  The feed-point 

strength qout is the difference between the wellbore flow rates above and below xout: qout = q212 – 

q226 = 1.25 – 0.75 = 0.50 L/min.     

In the present case, the two procedures for determining qout agree well because 

concentration at the outlet point reaches a constant Cmax value.  The latter method can be used 

even when this is not the case.  The determination of q212 with Equation (4.4) would be 

unchanged.  The determination of q226 with Equation (4.3) would be complicated by the fact that 

Slate would not be known, so the left-hand-side of Equation (4.3) would be undetermined, 

although it would still be a straight line.  Thus, q226 would be inferred as the value that yields 

some straight line for the right-hand-side of Equation (4.3), rather than a particular straight line 

with a known slope Slate.  This necessarily makes the matching procedure less precise, but it 

remains useful for providing initial guesses for numerical analysis with BORE II.   

Analysis of the remaining features of the C(x) profiles shown in Figure 1.1 (multiple 

inflow points, including an inflow point with C = C0, downflow out the bottom of the logged 

wellbore section, and a non-uniform initial condition), as well as a numerical analysis with 

BORE II, are presented elsewhere (Doughty and Tsang, 2000). 

5.  Summary and Conclusions 

Flowing wellbore electrical conductivity logging is a practical method for hydrologic 

characterization of individual fractures, fracture zones, or permeable layers intersecting a 
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borehole.  The first step in the analysis of a complex FEC log is to identify signatures of various 

flow conditions, which can greatly expedite setting up the numerical model of the 

borehole/fracture system used to simulate conductivity logging.  For each feed point along the 

borehole, we seek to identify a location, flow rate, and (for inflow points) concentration or 

salinity.  Inflow points generally produce distinctive signatures in the concentration profiles C(x) 

obtained directly from the FEC logs for the range of conditions discussed in this paper.  These 

are summarized in Figure 5.1.  Both early- and late-time C(x) profiles provide information on 

inflow points, and special conditions such as time-varying flow rate or concentration can be 

identified.  In contrast, outflow points often do not manifest themselves clearly in C(x) profiles, 

requiring a more elaborate mass-integral analysis, in which C(x) profiles are integrated over the 

entire borehole length to produce the ion mass in place, or mass integral, at a given time, M(t).  

M(t) is then plotted as a function of time, and breaks in slope of M(t) are used to identify outflow 

points.  These are also shown in Figure 5.1, lower right.  

  An understanding of the signatures produced by various flow conditions allows us to 

make the following recommendations concerning the operation and analysis of flowing wellbore 

electrical-conductivity logging: 

1. Start logging as soon as possible after de-ionized water is emplaced and pumping begins, 

to enable the area under individual peaks to be unambiguously determined.   

2. If possible, continue logging long enough for steady-state conditions to develop.  

Concentration plateaus for isolated peaks (Cmidi) and interfering peaks (Cmaxi) may be used 

with mixing rules to determine individual feed-point flow rates and concentrations.   

3. Repeat logging several times with one or two other pumping rates (e.g., half and double 

the original pumping rate).  The manner in which FEC peaks change with Q provides 
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information not only on the flow rate of the feed points, but on the transmissivity and far-

field pressure conditions of the fractures or permeable layers. 

4. Packing off the bottom of the wellbore interval being studied (i.e., setting qw = 0) reduces 

uncertainty for most analyses.  However, for certain features, such as the decreasing feed-

point concentration illustrated in Figure 2.3d, the presence of qw enhances the signature. 

5. For the analysis of horizontal flow, the initial series of logging runs should be done with 

as low a pumping rate as possible (or zero rate), to enable visual identification of the non-

skewed peaks indicating horizontal flow Q0.  Subsequent logging with a relatively large 

pumping rate (at least 2Q0) encourages a Cmax plateau to develop, which in turn enables an 

improved estimate of Q0 to be made.  Comparison to the Drost et al. (1968) analytical 

solution (for thick layers) or BORE II results (for thin layers or individual fractures) can 

further constrain Q0. 

A suggested step-by-step guideline for the analysis of flowing wellbore FEC logs is 

shown in Tables 5.1–5.5, comprising five categories: early-time analysis, late-time analysis, M(t) 

analysis, multiple-Q analysis, and BORE II analysis.  These tables also form a concise summary 

of all key methods presented in this paper.  Generally, the recommended procedure involves first 

investigating inflow points in C(x), using the area under individual peaks and plateau 

concentrations.  Next, check for outflow by calculating M(t) over the entire profile and 

examining the breaks in slope.  Then, logs with different pumping rates can be taken to infer 

more about feed-point properties.  All of these steps can be carried out in conjunction with 

numerical simulations using BORE II, which is also used to optimize or refine the feed-point 

flow rates and salinities.  Finally, inferred properties should be critically evaluated in the context 

of other geological, hydrological, geophysical, and geochemical analyses available for the site.  
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Such systematic studies of flowing wellbore FEC logs not only yield parameter values for 

hydraulic properties of fractures or permeable layers, but also provide insight into the physical 

and chemical processes that have occurred. 

Appendix: Governing Equations 

The principal equation governing wellbore FEC variation is the one-dimensional 

advection-diffusion equation for the transport of mass (or ion concentration) in the wellbore.  

However, additional consideration must be given to the determination of FEC as a function of 

ion concentration and the temperature dependence of FEC. 

A.1  FEC as a Function of Concentration 

The relationship between ion concentration and FEC is reviewed, for example, by 

Shedlovsky and Shedlovsky (1971), who give graphs and tables relating these two quantities.  

Hale and Tsang (1988) made a sample fit for the case of NaCl solution at low concentrations and 

obtained  

FEC = 1,870 C − 40 C2,        (A.1) 

where C is ion concentration in kg/m3 (≈ g/L) and FEC is in µS/cm at 20oC.  The expression is 

accurate for a range of C up to ≈ 6 kg/m3 and FEC up to 11,000 µS/cm.  The quadratic term can 

be dropped if we are interested only in values of C up to ≈ 4 kg/m3 and FEC up to 7,000 µS/cm, 

in which case the error will be less than 10%.   

Fracture fluids typically contain a variety of ions, the most common being Na+, Ca2+, 

Mg2+, Cl–, SO4
2–, and HCO3

–.  If a hydrochemical analysis has been completed, various methods 

are available for computing an equivalent NaCl concentration for other ions.  Schlumberger 
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(1984) presents charts of multiplicative factors that convert various solutes to equivalent NaCl 

concentrations with respect to their effect on FEC. 

A.2  Temperature Dependence of FEC  

In the present work, calculations are made assuming a uniform temperature throughout 

the wellbore.  Actual wellbore temperatures generally vary with depth, so temperature 

corrections must be applied to field FEC data to permit direct comparison with model output. 

The effect of temperature T on FEC can be estimated using the following equation 

(Schlumberger, 1984): 

C)20(1
)(FECC)20(FEC o

o

−+
=

TS
T ,       (A.2) 

where S = 0.024. 

Generally, temperature increases with depth below the land surface.  If complete 

temperature logs are available, these data can be used to correct the corresponding FEC values.  

However, if complete logs are not available, the temperature variation in the wellbore can often 

be approximated as linear: 

T = Ax + B,          (A.3) 

where A and B are parameters determined by fitting any available temperature versus depth data 

at the site.  If the fit is unsatisfactory, relationships with higher-order terms may be used. 

A.3  Advection-Diffusion Equation 

The advection-diffusion equation describes the evolution of ion concentration as a 

function of space and time in a wellbore containing multiple feed points, given the pumping rate 
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of the well, the inflow or outflow rate of each feed point, its location, and, for inflow points, its 

ion concentration.  We assume that transport occurs by longitudinal advection and diffusion 

along the wellbore, with instantaneous mixing of feed-point fluid in the plane of the wellbore 

cross section.  These assumptions allow use of a one-dimensional model; the differential 

equation for mass or solute transport in a wellbore is: 

( )
t
CSCv

xx
CD

x o ∂
∂

=+
∂
∂

−







∂
∂

∂
∂ ,       (A.4) 

where x is depth, t is time, and C is ion concentration.  The first term is the diffusion term, with 

D0 the diffusion/dispersion coefficient in m2/s, the second term is the advective term, with v the 

fluid velocity in m/s, and S is the source term in kg/m3s.  This one-dimensional partial 

differential equation is solved numerically using the finite-difference method, with upstream 

weighting applied in the advective term.  The following initial and boundary conditions are 

specified: 

C(x, 0) = C0(x),         (A.5) 

C(xmin, t) = C0(xmin) for flow into the wellbore from above, 

C(xmax, t) = C0(xmax) for flow into the wellbore from below, 

D0 = 0 for x < xmin and x > xmax.  

The first condition allows for the specification of initial ion concentrations in the wellbore.  The 

second and third conditions allow for advective flow of ions into the wellbore interval from 

above and below.  The final condition ensures that diffusion and dispersion do not take place 

across the boundaries of the wellbore interval.  In general, advection will be the dominant 
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process at the boundaries.  If diffusion or dispersion is dominant for a particular problem, the 

boundaries should be extended to prevent improper trapping of electrolyte. 
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Figure Captions 

Figure 1.1.  Example of flowing wellbore FEC logs (Colog, Inc., personal communication, 

1999).  Later profiles are shown as thicker lines. 

Figure 2.1.  Simulated concentration profiles for three inflow feed points: (a) at early times 

before peaks interfere; and (b) at later times, including near steady-state conditions. 

Figure 2.2.  Simulated concentration profiles for three inflow feed points with the addition of 

upflow from below: (a) at early times before peaks interfere; and (b) at later times, including 

steady-state conditions. 

Figure 2.3.  Simulated concentration profiles obtained at early times for inflow points with (a) 

constant Ci; (b) increasing Ci; (c) decreasing Ci; and (d) decreasing Ci and upflow from below. 

The profiles are equally spaced in time.  

Figure 2.4.  Simulated concentration profiles for an inflow point with Ci = C0 (a) above another 

inflow point; (b) above another inflow point with upflow from below; (c) above another inflow 

point at long times; and (d) below another inflow point.  On each plot, the profiles are equally 

spaced in time. 

Figure 2.5.  Simulated concentration profiles obtained at early times for an outflow point (a) 

below another inflow point; (b) below another inflow point with upflow from below; (c) above 

another inflow point; and (d) above another inflow point with upflow from below.  The profiles 

are equally spaced in time.  

Figure 2.6.  Simulated concentration profiles obtained at long times for widely separated inflow 

and outflow points. 
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Figure 2.7.  Simulated concentration profiles comparing inflow and horizontal flow for (a) a 

single inflow point; (b) a thin layer of horizontal flow; (c) a single inflow point with little 

longitudinal diffusion; (d) a thin layer of horizontal flow with little longitudinal diffusion; (e) a 

thick inflow zone; and (f) a thick layer of horizontal flow and the Drost et al. (1968) analytical 

solution (symbols).  The time interval doubles between successive concentration profiles. 

Figure 2.8.  Simulated concentration versus time curves for the horizontal-flow cases shown in 

Figure 2.7b, d, and f, as well as for a thick layer with little longitudinal diffusion and the Drost et 

al. (1968) analytical solution. 

Figure 2.9.  Short-time example of the mass-integral method: (a) simulated concentration 

profiles; and (b) M(t) integral and linear fit to early points. 

Figure 2.10.  Long-time example of the mass-integral method: (a) simulated concentration 

profiles; and (b) M(t) integral and linear fits to early and late points. 

Figure 3.1.  The effect of varying Q on concentration profiles for a single inflow point.  On each 

plot, the profiles are equally spaced in time. 

Figure 3.2.  The effect of varying Q on concentration profiles and mass integral for inflow and 

outflow points when all Ti’s are the same. 

Figure 3.3.  The effect of varying Q on concentration profiles for horizontal flow Q0: (a) Q = 0; 

(b) Q = Q0/2; (c) Q = Q0; and (d) Q = 2Q0.  The profiles are equally spaced in time. 

Figure 3.4.  The effect of varying Q on concentration profiles for horizontal flow Q0 when 

upflow is present: (a) and (b) Q = Q0/2; (c) and (d) Q = Q0; (e) and (f) Q = 2Q0.  In the left 

column, upflow is from one inflow point; in the right column, upflow is from an extensive 

recharge zone.  The profiles are equally spaced in time. 
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Figure 3.5.  The effect of varying Q on inflow rates qi: (a) inflow rates for base Q and doubled Q; 

(b) ∆q for each feed point (feed points with the same ∆qi have the same Ti); (c) ∆q/q for each 

feed point (feed points with the same ∆q/q have the same Pi).  

Figure 4.1.  Concentration profiles obtained from wellbore electrical conductivity logging of well 

SW1 at the Raymond field site in California (K. Karasaki, personal communication, 2001; see 

also Karasaki et al., 2000).  Equation (A.1) is used to convert FEC to C.  Concentration profile 

times (in minutes) are 1.8, 14, 25, 39, 52, and 66, with later profiles shown as thicker lines.  The 

vertical arrows identify feed-point locations and the horizontal arrows indicate the integration 

range for the corresponding peak. 

Figure 4.2.  Mass integrals Mi(t) for the six concentration peaks shown in Figure 4.1 and the 

linear fits used to determine qiCi (slope) and t0i (time-axis intercept). 

Figure 4.3.  Comparison of observed and simulated concentration profiles for Raymond well 

SW1 for the initial parameter set (Table 4.1), obtained by analysis of observed concentration 

profile signatures.  

Figure 4.4.  Comparison of observed and simulated concentration profiles for Raymond well 

SW1 for the final parameter set (Table 4.2), obtained by trial-and-error fitting with BORE II. 

Figure 4.5.  Concentration profiles obtained from wellbore electrical-conductivity logging of 

well W00 at the Raymond field site in California (K. Karasaki, personal communication, 2000).  

Equation (A.1) is used to convert FEC to C.  Concentration profile times (in minutes) are 3.5, 15, 

26, 38, 51, 62, and 99, with later profiles shown as thicker lines.  The vertical arrows identify 

feed-point locations and the horizontal arrows indicate the integration range for the 

corresponding peak.  
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Figure 4.6.  Mass integrals Mi(t) for four of the concentration peaks shown in Figure 4.5 and the 

linear fits used to determine qiCi  (slope) and t0i (time-axis intercept).  For Peak 1, the cubic 

curve fit to M1(t) (dashed line) may be used to determine a time-dependent C1. 

Figure 4.7.  Comparison of observed and simulated concentration profiles for Raymond well 

W00 for the parameter set (Table 4.3) obtained by analysis of observed concentration profile 

signatures.  

Figure 4.8.  Comparison of observed and simulated concentration profiles for the lowest peak of 

Raymond well W00: (a) horizontal flow; (b) inflow with constant C1 above outflow; and (c) 

inflow with variable C1(t) (see Figure 4.6) above outflow. 

Figure 4.9.  Use of the mass-integral method to identify an outflow point: (a) C(x) profiles; (b) 

M(t) integral for the entire wellbore section (M226) along with linear fits to early and late points, 

and M(t) integral for the wellbore section above the outflow point (M212); and (c) corrected M(t) 

integrals for the entire wellbore section (M226') and for the section above the outflow point 

(M212').  The lines show the linear fits used for the left-hand-sides of Equations (4.3) and (4.4) 

and the symbols show the right-hand-sides incorporating the optimal values of q226 and q212.   

Figure 5.1.  Overview of the C(x) and M(t) signatures discussed in this paper, along with the 

section number where each is presented. 
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Tables 

Table 2.1.  Feed-point parameters inferred from concentration profiles shown in Figure 2.1.  The 
actual feed-point parameters used to generate the concentration profiles are shown in parentheses 
if they differ from the inferred values.  The differences reflect numerical inaccuracies in 
integration and estimation procedures. 

Feed Point Parameter How Determined 

1 2 3 

x (m) Observed from early-
time C(x) profiles 

120 90 60 

qC (kg/s) Calculated from area 
under early-time C(x) 
peak 

3.79E-6 
(3.75E-6) 

7.70E-6 
(7.50E-6) 

1.16E-5 
(1.13E-5) 

Cmax (kg/m3) Observed from late-time 
C(x) profiles 

0.30 0.45 0.60 

q (m3/s) Calculated from current 
Cmax and current and 
deeper qC values 

1.26E-5 
(1.25E-5) 

1.29E-5 
(1.25E-5) 

1.29E-5 
(1.25E-5) 

C (kg/m3) Calculated from current 
qC and q values 

0.30 0.60 0.89 
(0.90) 
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Table 4.1.  Parameters estimated for Raymond Site Well SW1 using analysis of concentration 
profile signatures (corresponding C(x) profiles are shown in Figure 4.3).   

Feed Point Parameter How Determined 

1 2 3 4 5 6 

x (m) Observed from early-
time C(x) profiles 

64 36 28 22 16 14 
 

qC (g/min) Calculated from area 
under early-time C(x) 
peak 

0.21 0.007 0.009 0.042 0.0010 0.042 

Cmax (g/L) Estimated from late-
time C(x) profiles 

0.11*,a 0.008 0.012 0.029* 0.024* 0.038* 
 

q (L/min) Calculated from 
current Cmax and 
current and deeper qC 
values 

2.1a 0.058 0.062 0.21 0.011 0.200 

C (g/L) Calculated from qC 
and q values  

0.11 0.13 0.15 0.21 0.13 0.21 

*Not well constrained by C(x) profile, estimated in conjunction with q and C. 
aDetermined by trial and error using BORE II
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Table 4.2.  Final parameter set for Raymond Site Well SW1, obtained by varying the parameters 
given in Table 4.1 as needed for BORE II simulations to match observed data  (corresponding 
C(x) profiles are shown in Figure 4.4). 

Feed Point Parameter 

1 2 3 4 4a 4b 5 6 

x (m) 64 36 28 22 20 17 16 14 

q (L/min) 2.1 0.058 0.070 0.25 0.60 –1.0 0.057 0.20 

C (g/L) 0.11 0.13 0.15 0.21 0.0050 N/A 0.20 0.22 
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Table 4.3.  Summary of parameters for Raymond well W00.  Corresponding C(x) profiles are 
shown in Figure 4.7. 

Feed Point Parameter How Determined 

1 2 3 4 4a 5 

x (m) Observed from early-
time C(x) profiles 

72 61 58 29 26 12 
 

qC (g/min) Calculated from area 
under early-time C(x) 
peak 

0.055 0.27 0.62 0.11 

Cmax (g/L) Estimated from late-
time C(x) profiles 

0.25* 0.12* 0.084 0.079 0.085* 

q (L/min) Determine by trial 
and error using 
BORE II 

+/–0.25b 1.6 0.66 2.4 3.2 0.72 

C (g/L) Calculated from qC 
and q values 

0.25b 0.12 0.12 0.16 0.072 0.15 

*Not well constrained by C(x) profile, estimated in conjunction with q and C. 
bHorizontal flow, q and C determined by trial and error independent of the qC product obtained 
from area under peak 
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Table 5.1.  Step-by-step guide to analysis of flowing wellbore FEC logs: early-time analysis.   

YES
There is

no upflow
from below

NO
There is
upflow

from below

Integrate over
individual peaks to

get Mi(t)

YES
qi and Ci

are constant;
fit line to get t0i

NO
qi or Ci varies

or outflow
is present

Go to
late-time
analysis

Is Mi(t) vs t
linear?

Is lower limb of
lowest peak diffusive?

YES
Peaks represent

inflow

YES
Use Drost
or BORE II

to determine Q0

NO
Use BORE II

to determine Q0

Is flow layer thick?

NO
Peaks represent
horizontal flow

Do peaks become
skewed with time?

YES

Go to late-time analysis

Use BORE II to get qi
and Ci by trial and error

NO

Are individual peaks isolated?

Identify xi of individual peaks
in early-time C(x) profiles

Early-time Analysis



                                                            51 

Table 5.2.  Step-by-step guide to analysis of flowing wellbore FEC logs: late-time analysis.   

YES
Use Mixing rules

to determine
qi and Ci

NO
Use BORE II
to determine

qi and Ci

Go to M(t) analysis

Use BORE II
to refine qi and Ci

Use Q to
constrain qi

Are concentration plateaus visible
in late-time C(x) profiles?

Late-time Analysis
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Table 5.3.  Step-by-step guide to analysis of flowing wellbore FEC logs: mass-integral M(t) 
analysis.   

Use BORE II
to verify

qi and Ci values

All feed points are
inflow points with
constant qi and Ci

YES

Use BORE II
to determine
qi(t) or Ci(t)

YES
Ci or qi vary with time

or peak leaves
borehole section

Use BORE II
to verify

qi and Ci values

Use slopes of
linear segments and

Cmax to determine qout

NO
Kinks between

linear segments
show outflow points

Is M(t) smoothly curved?

NO

Is M(t) vs t linear?

Integrate over entire
C(x) profile to

create M(t)

M(t) Analysis
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Table 5.4.  Step-by-step guide to analysis of flowing wellbore FEC logs: analysis of logs with 
two or more Q’s.   

Go to
C(x) analysis

Use largest Q
to check for
Cmax plateau

Use smallest Q
to check for

horizontal flow

Single peak Multiple peaks

Use Q, Pwb, and
∆Pwb to find

actual values
of Ti and Pi

Use relative changes
in peak or plateau

height to find variability
of Ti and Pi

Examine C(x)
for different Q values

Go to
C(x) analysis

All feed points
produce peaks

in C(x)

YES
All outflow has
become inflow

NO
Still have outflow

Is M(t) linear?

Examine M(t)
for increasingQ values

YES NO

Are logs with different Q values available?
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Table 5.5.  Step-by-step guide to analysis of flowing wellbore FEC logs: BORE II analysis.   

YES
All done!

NO
Refine xi, qi, and Ci values

Is match acceptable?

Compare calculated and observed FEC logs

Run BORE II

Take xi, qi, and Ci values
from C(x) or M(t) analyses

or estimate them by any means

BORE II Analysis
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Figure 1.1.  Example of flowing borehole FEC logs (Colog, Inc., personal 
communication, 1999).  Later profiles are shown as thicker lines. 
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Figure 2.1.  Simulated concentration profiles for three inflow feed points: (a) at early 
times before peaks interfere; and (b) at later times, including near steady-state conditions. 
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Figure 2.2.  Simulated concentration profiles for three inflow feed points with the 
addition of upflow from below: (a) at early times before peaks interfere; and (b) at later 
times, including steady-state conditions. 
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Figure 2.3.  Simulated concentration profiles obtained at early times for inflow points 
with (a) constant Ci; (b) increasing Ci; (c) decreasing Ci; and (d) decreasing Ci and 
upflow from below. The profiles are equally spaced in time.  
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Figure 2.4.  Simulated concentration profiles for an inflow point with Ci = C0 (a) above 
another inflow point; (b) above another inflow point with upflow from below; (c) above 
another inflow point at long times; and (d) below another inflow point. On each plot, the 
profiles are equally spaced in time. 
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Figure 2.5.  Simulated concentration profiles obtained at early times for an outflow point 
(a) below another inflow point; (b) below another inflow point with upflow from below; 
(c) above another inflow point; and (d) above another inflow point with upflow from 
below.  The profiles are equally spaced in time.  
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Figure 2.6.  Simulated concentration profiles obtained at long times for widely separated 
inflow and outflow points. 
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Figure 2.7.  Simulated concentration profiles comparing inflow and horizontal flow for 
(a) a single inflow point; (b) a thin layer of horizontal flow; (c) a single inflow point with 
little longitudinal diffusion; (d) a thin layer of horizontal flow with little longitudinal 
diffusion; (e) a thick inflow zone; and (f) a thick layer of horizontal flow and the Drost et 
al. (1968) analytical solution (symbols).  The time interval doubles between successive 
concentration profiles. 
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Figure 2.8.  Simulated concentration versus time curves for the horizontal flow cases 
shown in Figure 2.7b, d, and f, as well as for a thick layer with little longitudinal 
diffusion and the Drost et al. (1968) analytical solution. 
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Figure 2.9.  Short-time example of the mass integral method: (a) simulated concentration 
profiles; and (b) M(t) integral and linear fit to early points. 
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Figure 2.10.  Long-time example of the mass integral method: (a) simulated 
concentration profiles; and (b) M(t) integral and linear fits to early and late points. 
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Figure 3.1.  The effect of varying Q on concentration profiles for a single inflow point.  
On each plot, the profiles are equally spaced in time. 
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Figure 3.2.  The effect of varying Q on concentration profiles and mass integral for 
inflow and outflow points when all Ti’s are the same. 
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Figure 3.3.  The effect of varying Q on concentration profiles for horizontal flow Q0: (a) 
Q = 0; (b) Q = Q0/2; (c) Q = Q0; and (d) Q = 2Q0.  The profiles are equally spaced in 
time. 
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Figure 3.4.  The effect of varying Q on concentration profiles for horizontal flow Q0 
when upflow is present: (a) and (b) Q = Q0/2; (c) and (d) Q = Q0; (e) and (f) Q = 2Q0.  In 
the left column, upflow is from one inflow point; in the right column, upflow is from an 
extensive recharge zone.  The profiles are equally spaced in time. 
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Figure 3.5.  The effect of varying Q on inflow rates qi: (a) inflow rates for base Q and 
doubled Q; (b) ∆q for each feed point (feed points with the same ∆qi have the same Ti); 
(c) ∆q/q for each feed point (feed points with the same ∆q/q have the same Pi).  
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Figure 4.1.  Concentration profiles obtained from borehole electrical conductivity logging 
of well SW1 at the Raymond field site in California (K. Karasaki, personal 
communication, 2001; see also Karasaki et al., 2000).  Equation (A.1) is used to convert 
FEC to C.  Concentration profile times (in minutes) are 1.8, 14, 25, 39, 52, and 66, with 
later profiles shown as thicker lines.  The vertical arrows identify feed point locations and 
the horizontal arrows indicate the integration range for the corresponding peak. 
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Figure 4.2.  Mass integrals Mi(t) for the six concentration peaks shown in Figure 4.1 and 
the linear fits used to determine qiCi (slope) and t0i (time-axis intercept). 
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Figure 4.3.  Comparison of observed and simulated concentration profiles for Raymond 
well SW1 for the initial parameter set (Table 4.1), obtained by analysis of observed 
concentration profile signatures.  
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Figure 4.4.  Comparison of observed and simulated concentration profiles for Raymond 
well SW1 for the final parameter set (Table 4.2), obtained by trial and error fitting with 
BORE II. 
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Figure 4.5.  Concentration profiles obtained from borehole electrical-conductivity 
logging of well W00 at the Raymond field site in California (K. Karasaki, personal 
communication, 2000).  Equation (A.1) is used to convert FEC to C.  Concentration 
profile times (in minutes) are 3.5, 15, 26, 38, 51, 62, and 99, with later profiles shown as 
thicker lines.  The vertical arrows identify feed-point locations and the horizontal arrows 
indicate the integration range for the corresponding peak. 
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Figure 4.6.  Mass integrals Mi(t) for four of the concentration peaks shown in Figure 4.5 
and the linear fits used to determine qiCi  (slope) and t0i (time-axis intercept).  For Peak 1, 
the cubic curve fit to M1(t) (dashed line) may be used to determine a time-dependent C1. 
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Figure 4.7.  Comparison of observed and simulated concentration profiles for Raymond 
well W00 for the parameter set (Table 4.3) obtained by analysis of observed 
concentration profile signatures.  
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Figure 4.8.  Comparison of observed and simulated concentration profiles for the lowest 
peak of Raymond well W00: (a) horizontal flow; (b) inflow with constant C1 above 
outflow; and (c) inflow with variable C1(t) (see Figure 4.6) above outflow. 
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Figure 4.9.  Use of the mass-integral method to identify an outflow point: (a) C(x) 
profiles; (b) M(t) integral for the entire wellbore section (M226) along with linear fits to 
early and late points, and M(t) integral for the wellbore section above the outflow point 
(M212); and (c) corrected M(t) integrals for the entire wellbore section (M226') and for the 
section above the outflow point (M212').  The lines show the linear fits used for the left-
hand-sides of Equations (4.3) and (4.4) and the symbols show the right-hand-sides 
incorporating the optimal values of q226 and q212.   
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Figure 5.1.  Overview of the C(x) and M(t) signatures discussed in this paper, along with 
the section number where each is presented. 
 


